Spacetimes with distributional semi-Riemannian metrics and their curvature

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

A Note on Distributional Semi-riemannian Geometry

We discuss some basic concepts of semi-Riemannian geometry in low-regularity situations. In particular, we compare the settings of (linear) distributional geometry in the sense of L. Schwartz and nonlinear distributional geometry in the sense of J.F. Colombeau. AMS Mathematics Subject Classification (2000): Primary: 83C75; secondary: 46T30, 53B30, 46F10, 46F30.

متن کامل

Lorentz and Semi-riemannian Spaces with Alexandrov Curvature Bounds

A semi-Riemannian manifold is said to satisfy R ≥ K (or R ≤ K) if spacelike sectional curvatures are ≥ K and timelike ones are ≤ K (or the reverse). Such spaces are abundant, as warped product constructions show; they include, in particular, big bang Robertson-Walker spaces. By stability, there are many non-warped product examples. We prove the equivalence of this type of curvature bound with l...

متن کامل

Curvature Flows in Semi-riemannian Manifolds

We prove that the limit hypersurfaces of converging curvature flows are stable, if the initial velocity has a weak sign, and give a survey of the existence and regularity results.

متن کامل

Spacetimes characterized by their scalar curvature invariants

In this paper we determine the class of four-dimensional Lorentzian manifolds that can be completely characterized by the scalar polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives. We introduce the notion of an I-non-degenerate spacetime metric, which implies that the spacetime metric is locally determined by its curvature invariants. By determinin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2020

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2020.103623